
Abstract Resource Management
in an Unconstrained Plan Execution System

Erann Gat
JPL MS 525-3660

4800 Oak Grove Drive
Pasadena, CA 91109

(818) 354-4674
gat@jpl.nasa.gov

Barney Pell
NASA Ames Research Center

Mountain View, CA
(415) 604-3361

pell@ptolemy.arc.nasa.gov

AbstractÑWe describe the abstract resource management
mechanism in ESL (Execution Support Language [3]). ESL
is the implementation substrate for the New Millennium
Remote Agent Smart Executive [9], part of a NASA
program to demonstrate autonomous control of an
unmanned spacecraft scheduled to launch in 1998. The
executive is responsible for robust plan execution in the face
of unexpected run-time contingencies. Part of this task
requires run-time management of the spacecraft's
configuration, whose component states are modeled as
abstract resources. In this paper we describe the ESL
constructs for managing these abstract resources. The
resource management facilities in ESL are similar to the
constraint management constructs in RAPs [2]. The major
contribution in this paper is the implementation of these
facilities in an unconstrained execution substrate
implemented as an extension to a standard programming
language (in this case, Common Lisp) rather than within a
constrained self-contained plan execution language. This
turns out to significantly simplify complex programming
tasks.

The main technical problem in a resource management
system is designing a representation that allows automatic
determination of when conflicts exist. In its full generality
this becomes a full-blown planning problem, and therefore
an impractical strategy for a reactive executive. Instead, we
model abstract resources as properties, logical assertions
whose final values are guaranteed unique. When two
properties are identical but for their final value then they are
in conflict. This paper describes the ESL constructs and
mechanisms for scheduling tasks so that they do not
attempt to achieve conflicting properties simultaneously,
and for invoking external recovery mechanisms for restoring
properties to their desired states when forced away from
those states by unexpected contingencies.

TABLE OF CONTENTS

1. INTRODUCTION

2. ESL REVIEW

3. THE PROBLEM

4. PROPERTY LOCKS

5. APPLICATIONS

6. SUMMARY

1. INTRODUCTION

New Millennium is a NASA program for demonstrating
advanced technologies for unmanned space exploration. The
first New Millennium Mission is called Deep-Space 1
(DS1), and among other advanced technologies to fly on
this mission is an autonomy architecture called the Remote
Agent (RA) [8]. The Remote Agent consists of three major
components, a planner-scheduler, a model-based diagnosis
system, and an executive, which is responsible for plan
execution, managing run-time contingencies, and overall
coordination of spacecraft activities. The executive is
written in a specially designed language, ESL [3,6], which
provides advanced control constructs to simplify the task of
programming autonomous reactive control systems.

This paper describes the design and implementation of one
of ESL's feature sets: abstract resource management (ARM).
An abstract resource is a component of the state of a system.
Abstract resources include consumable resources like fuel,
renewable resources like electrical power and data storage,
and discrete states of spacecraft components such as power
states, and operational modes. The current ARM features of
ESL address only discrete-state resources.

The general problem of run-time resource management is
equivalent to the planning problem and is thus intractable.
We approach the problem here not as a theoretical problem
but as a software engineering problem: what sorts of
language constructs are required to enable human
programmers to effectively encode run-time knowledge

about resource management? Our approach is based on the
idea of memory properties [2], logical assertions whose last
element is guaranteed to be unique. Memory properties
provide a useful structure both for determining when
resource conflicts exist, and for recovering from conflicts.

We begin with a brief review of ESL's basic structure and
features.

2. ESL REVIEW

ESL (Execution Support Language) is a language for
encoding execution knowledge in embedded autonomous
agents. It is designed to be the implementation substrate for
the sequencing component of a three-layer architecture such
as 3T [1] or ATLANTIS [4]. The sequencer in such an
architecture coordinates the actions of a reactive controller,
which controls the agent's actions, and a deliberative
component, which generates plans and performs other high-
level computations. The sequencer must be able to respond
quickly to events while bringing potentially large quantities
of information Ñ both knowledge and run-time data Ñ to
bear on its decisions. An implementation substrate for such
a system should also be able to deal with a variety of
different strategies for assigning responsibilities to the
various layers, from mostly reactive strategies, to ones where
the planner is the prime mover.

ESL is similar in spirit to RAPs [2], RPL [8], and RS [7],
and its design owes much to these systems. Unlike its
predecessors, ESL aims for a more utilitarian point in the
design space. ESL was designed primarily to be a powerful,
flexible, and easy-to-use tool, not to serve as a representation
for automated reasoning or formal analysis (although nothing
precludes its use for these purposes). ESL consists of several
sets of loosely coupled features that can be composed in
arbitrary ways. It is currently implemented as a set of
extensions to Common Lisp.

The following sections provide a brief overview of some of
the major feature sets in ESL. Most of these are used by the
resource management mechanism described in section 4. For
a complete description of the language see the ESL User's
Guide [6].

Contingency Handling

The contingency-handling constructs of ESL are based on the
concept of cognizant failure , which is a design philosophy
that states that systems should be designed to detect failures
when they occur so that the system can respond
appropriately. This approach presumes that the multiple
possible outcomes of actions are easily categorized as success
or failure. (It also assumes that failures are inevitable.) This
approach can be contrasted with approaches such as universal
plans [10] where multiple outcomes are all treated
homogeneously. Our experience has been that the cognizant-
failure approach provides a good reflection of human
intuitions about agent actions.

Basic constructs ÑThe two central contingency-handling
constructs of ESL are a means of signaling that a failure has

occurred, and a means of specifying a recovery procedure for
a particular type of failure. These constructs are:

(FAIL cause . arguments)

(WITH-RECOVERY-PROCEDURES
 (&rest recovery-clauses)
 &body body)

The FAIL construct signals that a failure has occurred, and
WITH-RECOVERY-PROCEDURES sets up recovery
procedures for failures. A call to FAIL is equivalent to a call
to an active recovery procedure (i.e. one whose restarts limit
has not been reached). Recovery procedures have dynamic
scope.

The syntax for a recovery clause is:

(cause &key retries . body)

or

((cause . args) &key retries . body)

In the first case any arguments in a FAIL statement which
transfers control to the recovery procedure are discarded. In
the second case arguments are lexically bound to ARGS.
Excess arguments are discarded, and missing arguments
default to nil. The optional keyword argument RETRIES
specifies the maximum number of times that particular
recovery procedure can be invoked during the current
dynamic scope of the WITH-RECOVERY-PROCEDURES
form. RETRIES defaults to 1. The value of RETRIES can
be the keyword :INFINITE, with the obvious results.

Within the BODY of a recovery procedure the special form
(RETRY) does a non-local transfer of control (a throw) to
the BODY of the WITH-RECOVERY-PROCEDURES form
of which the recovery procedure is a part, and the special
form (ABORT &optional result) causes RESULT to
be immediately returned from the WITH-RECOVERY-
PROCEDURES form.

A recovery procedure for cause :GENERAL-FAILURE is
applicable to a failure of any cause. It is possible to
generalize this mechanism to a full user-defined hierarchy of
failure classes, but so far we have not found this to be
necessary.

The scope of a set of recovery procedures is mutually
recursive in the manner of the Lisp LABELS construct, or
Scheme LETREC. That is, the scope of a recovery procedure
includes the recovery procedure itself, and all other recovery
procedures that are part of the same WITH-RECOVERY-
PROCEDURES form. Failures are only propagated upwards
when no recovery procedures for a given failure exist within
the current WITH-RECOVERY-PROCEDURES form, or
when all the retries for that failure have been exhausted. For
example, the following code will print FOO BAZ FOO
BAZ, and then fail with cause :FOO.

(with-recovery-procedures

 ((:foo :retries 2
 (print 'foo) (fail :baz))
 (:baz :retries 2
 (print 'baz) (fail :foo)))
 (fail :foo))

Cleanup procedures ÑIt is often desirable to insure that
certain actions get taken "if all else fails" and the execution
thread exits a certain dynamic context with a failure. For
example, one might want to insure that all actuators are shut
down if a certain procedure fails and the available recovery
procedures can't deal with the situation. Such a procedure is
called a cleanup procedure, and is provided in ESL using the
following construct:

(WITH-CLEANUP-PROCEDURE cleanup
 &body body)

This construct executes BODY, but if BODY fails,
CLEANUP is executed before the failure is propagated out of
the WITH-CLEANUP-PROCEDURE form. This construct
is similar to the Lisp UNWIND-PROTECT construct except
that the cleanup procedure is only executed if BODY fails.
(Because ESL is implemented on top of Common Lisp,
UNWIND-PROTECT is also available for implementing
unconditional cleanup procedures.)

Goal Achievement

Decoupling of achievement conditions and the methods of
achieving those conditions is provided by the ACHIEVE and
TO-ACHIEVE constructs. The syntax for these constructs
is:

(TO-ACHIEVE condition . methods)
(ACHIEVE condition)

Each METHOD is a COND clause. For example:

(to-achieve (device-ready)
 ((eq (device-power-state) :off)
 (turn-device-on))
 ((eq (device-health-state) :single-

event-upset)
 (reset-device))
 ((eq (device-health-state) :permanent-

failure)
 (fail :device-permanently-failed)))

The TO-ACHIEVE construct is somewhat analogous to the
RAP METHOD clause in that it associates alternative
methods with conditions under which those methods are
appropriate.

Task Management

Events ÑESL supports multiple concurrent tasks. Task
synchronization is provided by a data object type called an
event. A task can wait for an event, at which point that task

will block until another task signals that event. The
constructs are straightforward:

(WAIT-FOR-EVENTS events
 &optional test)
(SIGNAL event &rest args)

A task can wait on multiple events simultaneously; it
becomes unblocked when any of those events are signaled.
Also, multiple tasks can simultaneously wait on one event.
When that event is signaled, all the waiting tasks are
unblocked simultaneously. (Which task actually starts
running first depends on the task scheduler.)

If arguments are passed to SIGNAL-EVENT those arguments
are returned as multiple values from the corresponding
WAIT-FOR-EVENT. If WAIT-FOR-EVENTS is provided
an optional TEST argument, then the task is not unblocked
unless the arguments passed to SIGNAL answer true to
TEST (i.e. TEST returns true when called on those
arguments).

Checkpoints ÑESL tasks are themselves first-class data
objects which inherit from event. Thus, tasks can be waited-
for and signaled. However, because tasks have a linear
execution thread it is desirable to slightly modify the
semantics of an event associated with a task. Normal events
do not record signals; a task waiting on an event blocks until
the next time the event is signaled. However, a task waiting
for another task should not block if the other task has already
passed the relevant point in the execution thread. (For
example, if task T1 starts waiting for task T2 to end after T2
has already ended it should not block.) Thus, ESL provides
an additional mechanism called a checkpoint for signaling
task-related events. Signaling a checkpoint is the same as
signaling an event, except that a record is kept of the event
having happened. When a checkpoint is waited-for, the
record of past signals is checked first. In order to
disambiguate checkpoints, an identifying argument is
required. Thus we have the following constructs:

(CHECKPOINT-WAIT task id)
(CHECKPOINT id)

CHECKPOINT-WAIT waits until checkpoint ID has been
signaled by task TASK. CHECKPOINT signals checkpoint
ID in the current task. There is a privileged identifier for
signaling a checkpoint associated with the end of a task.
This checkpoint is automatically signaled by a task when it
finishes. To wait for this privileged identifier there is an
additional construct, WAIT-FOR-TASK, which is simply a
CHECKPOINT-WAIT for the task-end identifier.

Task nets ÑESL provides a construct called TASK-NET for
setting up a set of tasks in a mutually recursive lexical
context. The syntax is:

(TASK-NET [:allow-failures]
 (identifier &rest body)
 (identifier &rest body)
 ...)

The bodies in a TASK-NET are run in parallel in a lexical
scope in which the identifiers are bound to their
corresponding tasks. The TASK-NET form itself blocks
until all its children finish. Unless the optional :ALLOW-
FAILURES keyword is specified, if one subtask in a task net
fails the other tasks are immediately aborted and the whole
TASK-NET construct fails. There is also an OR-
PARALLEL construct which finishes when any one of its
subtasks finishes successfully, or all of them fail.

For example, the following code prints 1 2 3 4:

(TASK-NET
 (t1 (print 1)
 (checkpoint :cp)
 (checkpoint-wait t2 :cp)
 (print 3))
 (t2 (checkpoint-wait t1 :cp)
 (print 2)
 (wait-for-task t1)
 (print 4)))

Guardians ÑOne common idiom in agent programming is
having a monitor task which checks a constraint that must be
maintained for the operation of another task. We refer to the
monitoring task as a guardian task. The relationship
between a guardian and its associated main task is
asymmetric. A constraint violation detected by the guardian
should cause a cognizant failure in the main task, whereas
termination of the main task (for any reason) should cause
the guardian to be aborted. This asymmetric pair of tasks is
created by the following form:

(WITH-GUARDIAN guardform failform
 &body body)

WITH-GUARDIAN executes BODY and GUARDFORM in
parallel. If body ends, GUARDFORM is aborted. If
GUARDFORM ends, then the task executing body is
interrupted and forced to execute FAILFORM (which is
usually a call to FAIL).

For example, the following code operates a widget while
monitoring the widget in parallel. If MONITOR-WIDGET
returns, then OPERATE-WIDGET will fail cognizantly.

(with-guardian (monitor-widget)
 (fail :widget-failed)
 (operate-widget))

Logical Database

A logical database is provided as a modular functionality in
ESL. The major constructs supporting this database are
ASSERT and RETRACT, for manipulating the contents of
the database, DB-QUERY for making queries, and WITH-
QUERY-BINDINGS, which establishes a dynamic context
for logical variable bindings and continuations. The syntax
for WITH-QUERY-BINDINGS is:

(WITH-QUERY-BINDINGS query [:inherit-
bindings] . body)

Within a WITH-QUERY-BINDINGS form a call to NEXT-
BINDINGS calls the binding continuation, i.e. it causes a
jump to the start of BODY with the next available bindings
for QUERY. If there are no more bindings, NEXT-
BINDINGS fails with cause :NO-MORE-BINDINGS. (If
there were no bindings to begin with the WITH-QUERY-
BINDINGS form fails with cause :NO-BINDINGS.)

The special reader syntax #?VAR accesses the logical binding
of ?VAR. The :INHERIT-BINDINGS keyword causes the
bindings in a WITH-QUERY-BINDINGS form to be
constrained by any bindings that were established by an
enclosing WITH-QUERY-BINDINGS form.

For example, the following code will try all known widgets
until it finds one that it can operate successfully:

(with-query-bindings
 '(is-a ?widget widget)
 (with-recovery-procedures
 (:general-failure
 (next-bindings))
 (operate-widget #?widget)))

3. THE PROBLEM

The subset of ESL described in the previous section
provides mechanisms for synchronizing tasks and recovering
from unexpected contingencies, but it does not relieve the
programmer of the burden of insuring that parallel tasks do
not interfere with one another. For example, there is
nothing to prevent two tasks from simultaneously trying to
achieve mutually contradictory conditions, such as having a
device be simultaneously on and off.

Managing such interactions in general is an extremely
difficult problem. Simply determining that two conditions
are mutually contradictory is itself an intractable problem,
since conditions in ESL can be arbitrary predicates, and thus
involve arbitrary computations. Even if contradictory goals
can be detected, deciding how to deal with conflicts is in
general intractable because it can require planning and
scheduling.

One canonical example of the problems involved in
designing a run-time resource management is the following:
a domestic robot is frying chicken when a child has an
accident and has to be driven to the hospital. The desired
behavior is that the robot turns off the stove before leaving
the house in order to avoid burning the house down.
However, turning off the stove in the middle of cooking is
not normally part of the chicken-frying task, nor is it
normally part of taking a child to the hospital. It is the
result of an interaction between the two tasks when they are
carried out in unison. Specifically, it is the result of an
interaction having to do with a conflict over a resource,
namely, the robot's location.

A more realistic example in spacecraft is the following: a
particular valve must be actuated in order to initiate an
engine burn. The valve has a large transient power draw,
and would cause a bus trip if performed while the spacecraft
has a normal complement of devices powered on. The
"correct" response is to power off one or more devices (turn
off the stove), then actuate the valve (take the kids to the
hospital), and then turn the devices back on (finish frying
the chicken).

The general structure of this problem is that a high priority
task is in conflict with a low-priority task over a shared
resource. One possible solution is to provide a mechanism
by which a high-priority task can simply abort a low-
priority task when a resource conflict arises. The low-
priority task can use a cleanup procedure to perform the load
shedding operation (or turn off the stove) before it
terminates. This works in many cases, but it is not a
general solution because the cleanup procedure itself may
conflict with some other task or cause a deadline violation.
For example, consider a different kind of contingency in the
chicken-frying scenario: suppose a robber comes in to the
kitchen waving a gun. In such a situation it might not be
appropriate to waste time turning off the stove.
Alternatively, it might be acceptable for the robot to leave a
burning stove unattended for short periods of time. A
mechanism for handling such a situation must at the very
least have a vocabulary for one task to communicate to
another its intentions to usurp a resource for a limited time,
and possibly with many other parameters (including
probabilistic parameters) as well. Simply designing a
representation for the general case is a significant challenge,
let alone a computational mechanism for actually making
runtime decisions based on the information provided.

4. PROPERTY LOCKS

ESL provides a mechanism for solving a very constrained
version of the problem of controlling inter-task conflicts
through a mechanism called a property lock.

A property is a logical assertion whose final value is
guaranteed unique. For example, POWER-STATE is a
property, since it can be either ON or OFF, but not both at
once. (An example of a logical assertion that is not a
property is CONNECTED-TO, since a thing can be
connected to any number of other things.) ESL provides a
mechanism for managing inter-task interactions that can be
expressed as properties. This provides a simple heuristic for
determining when two tasks conflict: if two tasks attempt to
achieve properties that are identical but for their final values
then a conflict exists.

A property lock is a data structure that signals a task's
intention to make a property take on a particular value.
Property locks are used to coordinate tasks so that they do
not try to achieve different values for a single property at the
same time.

Property locks work as follows: A task wanting a property
P to have a certain value V expresses that desire by
SUBSCRIBING to a property lock for P. The subscription
process can have three outcomes:

1. No other task is subscribing to that lock, in which case
the subscription is successful, and the task is said to have
SNARFED the lock. (To snarf == to successfully
subscribe.) This task becomes the OWNER of the lock.

2. Some other task is subscribing to the lock, and the
values that the two tasks want the property to have are
compatible. In this case the task snarfs the lock but does
not become the lock's owner.

3. Some other task is subscribing to the lock and the
values are incompatible. In this case the subscription
FAILS with cause :PROPERTY-LOCK-UNAVAILABLE.
(A special form is provided that causes such failures to be
ignored, called WITHOUT-PROPERTY-LOCK-
FAILURES.)

The owner of a lock, once it has snarfed the lock, attempts
to actually make the property true by calling ACHIEVE on
the property. All secondary subscribers wait for the property
to be achieved by the owner. If the owner's call to
ACHIEVE fails, then all of the lock's subscribers fail with
cause :CONDITION-NOT-ACHIEVED.

Once a lock property has been achieved, the lock's
subscribers, which were waiting for the owner to achieve the
property, continue to run. If the lock's property
subsequently becomes false, then the lock property is said
to be VIOLATED. (Note: a lock property can only be
violated AFTER it is achieved for the first time.) When a
lock property is violated then all the lock's subscribers fail
with cause :MAINTAINED-PROPERTY-VIOLATION.

Automatic Recoveries

Maintained property violations are detected by a daemon
(i.e. a constantly running background process). This
daemon will also attempt to restore or recover violated
properties by calling a user-specified function on the
violated property. Normally, this function is simply the
ESL ACHIEVE function, but the Remote Agent uses a
different mechanism. (See below.)

Because of the existence of automatic recoveries, one
possible response for a task that has failed with a
:MAINTAINED-PROPERTY-VIOLATION is to simply
wait for the recovery daemon to automagically restore the
property. A special form, WITH-AUTOMATIC-
RECOVERIES is provided that does this.

If the daemon is unable to restore a violated lock's property
then the lock's subscribers fail with cause
:UNRECOVERABLE-PROPERTY-VIOLATION.

One issue that arises when implementing an automatic
recovery feature is that the recovery may be rendered moot if
none of the subscribers to a violated property can tolerate
temporary violations. If no task actually waits for an
automatic recovery of a violated property then the violation
will result in all subscribers exiting the dynamic context of
the property lock subscription, and the recovery is rendered
moot. This problem is solved in ESL by explicitly
yielding control to the task scheduler whenever a property
violation occurs. This provides all tasks with an

opportunity to decide whether to wait for an automatic
recovery or to release their subscription to the violated lock
(and possibly other locks as well). Only if subscribers to
the lock persist after this process does the automatic
recovery daemon attempt to restore the violated property.

The overall control flow of the property lock mehchanism is
shown graphically in figure 1. There is one additional
complication in our architecture that is not shown in the
figure, which was alluded to above. The arrow labelled
"monitors" represents more than just monitors. There is
also a sophisticated model-based reasoning system that
deduces device states that are not directly observable [11].

This system is also capable of generating command
sequences to restore device states to desired values. The
maintain-properties daemon uses this facility to generate
plans for restoring violated properties. So in the Remote
Agent two different mechanisms are used to achieve desired
states. The ESL ACHIEVE construct is used to achieve a
property when a lock is first snarfed, and the model-based
recovery generator (external to ESL) is used to restore states
in the event of unexpected contingencies. There is no
particular advantage to doing things this way. We did this
in order to excercise all of the capabilities of the system.

Camera power On

ACS Mode A

Comm mode HGA
Camera health OK

Property Locks

Maintain-Properties
Daemon

Spacecraft

Database

Tasks

Task
Interrupts

Subscribe

Control
Commands

Lock
Events

State
Updates

Monitors

Figure 1: Graphical illustration of the control flow for the property lock
mechanism.

5. APPLICATIONS

The property lock mechanism has been used in the DS1
Remote Agent Executive to implement the configuration
management subsystem, which is a collection of utilities
that embodies knowledge of configuration-management
concepts such as redundancy, device mode management, and
generic failure recovery. The use of these utilities greatly
simplifies the coding of configuration management routines
for any spacecraft. In general, all that is required is to
describe the configuration of the spacecraft by listing the
devices and their interconnections. The system knows
about the concepts of power and data busses, single-event
upsets, and redundancy.

The system is given information about the spacecraft
information through the ESL database. For example, here
are all the database entries relating to the x-axis engine
gimbal actuator (EGA) at the beginning of a run:

(IS-A :EGA_X :EGA_X_FACING)
(TALKS-THRU :EGA_X :GDE)
(POWERED-THRU :EGA_X :NEB1)
(SWITCHED-THRU :EGA_X

:ACS_GDE_IPS_X_SW1)
(:HEALTH_STATE :EGA_X :OK)
(:POWER_STATE :EGA_X :OFF)

We see that EGA_X is an x-facing engine gimbal actuator.
It communicates through the gimbal drive electronics
(GDE). It is powered through the first non-essential bus
(NEB1). Its power is controlled by a switch called
ACS_GDE_IPS_X_SW1. It is currently working properly
and powered off.

The configuration management system contains routines for
configuring devices into high-level abstract states. For
example, a ready state is defined as one where the device is
powered on and ready to receive commands. The system
tracks the spacecraft configuration information through the

database in order to decide which low-level configuration
changes to make in order to bring about such a state.

To bring EGA_X into the abstract ready state the system
first attempts to turn the power on. To do this it first
queries the database to find out which switch controls the
power to EGA_X, and then sends a command to the switch
to turn itself on. Faults are handled automatically through a
series of recovery procedures. First the system simply tries
the switch again. If that fails, it checks for the presence of a
redundant switch and tries that. If that fails, it looks to see
if the device itself has a redundant backup and tries that.

Once the power is successfully turned on the system then
attempts to establish a communications pathway to the
device. This involves a similar string of operations to get
the required communications devices (in this case the
gimbal drive electronics) recursively into a ready state.

The situation is complicated somewhat by the presence in
our architecture of a model-based diagnosis system [11] that
can deduce, for example, whether failures are transient or
permanent. If a fault is diagnosed as a permanent fault then
certain recoveries (like trying again) are bypassed because it
is know they will not work. The model-based diagnosis
system is also capable of generating sequences of actions to
recover from certain fault situations. This capability is used
by the recovery daemon.

The property-lock mechanism is used by the configuration
management system to insure that mutually-conflicting
configurations are not attempted simultaneously. All
abstract configurations are resolved into locks on the
component states. So, for example, if a task requests that
EGA_X be made ready, another task will not be able to
obtain a lock on (power-state ega_x off). Of course, nothing
actually prevents a task from turning EGA_X off; the
property lock mechanism requires cooperation among tasks
to be effective. If this happens, the maintain-properties
daemon will see this as a fault and attempt to restore the
required state by turning the power back on.

6. SUMMARY

An executive for an autonomous agent faces the problem of
how to manage interactions among parallel tasks that
attempt to achieve mutually contradictory conditions. In its
full generality this is an intractable problem. We have
presented one limited solution based on the idea of memory
properties, logical assertions with unique final values.
Tasks coordinate their effects by declaring their intentions to
make a property assume a certain value through a data
structure called a property lock. This mechanism has been
implemented in a system called ESL, and is being used in a
control system for an autonomous spacecraft.

We note that property locks tend to have the following
form:

(property-name object-name value)

This structure suggests an alternate implementation in terms
of object-oriented design. Instead of a logical database,

system state can be stored in objects whose slots have the
names of the properties of interest. So, for example, a
device object would have a slot for its power state, its
health state, its communications connections, its power
connections, and so on. This implementation could be
more efficient than the logical-database currently used in
ESL, but it compromises some functionality. For example,
the logical database makes it easy to find a healthy device of
a certain type simply by doing a logical query of the form:

(and (is-a ?x ?type) (health-state ?x
:ok))

To obtain this functionality in an object-oriented database in
general is very difficult. Whether it is worth putting forth
this effort, or compromising on generality, to obtain greater
efficiency for the more common cases remains to be seen.

REFERENCES

[1] R. Peter Bonasso, et al. "Experiences with an
Architecture for Intelligent Reactive Agents," Journal of
Experimental and Theoretical AI, to appear.

[2] R. James Firby. Adaptive Execution in Dynamic
Domains, Ph.D. thesis, Yale University Department of
Computer Science, 1989.

[3] Erann Gat. "ESL: A Language for Supporting Robust
Plan Execution in Embedded Autonomous Agents"
Proceedings of the 1997 IEEE Aeropspace Conference.

[4] Erann Gat. "Integrating Reaction and Planning in a
Heterogeneous Asynchronous Architecture for
Controlling Real World Mobile Robots," Proceedings
of the Tenth National Conference on Artificial
Intelligence (AAAI), 1992.

[5] Erann Gat. "News From the Trenches: An Overview of
Unmanned Spacecraft for AI Researchers, " Presented at
the 1996 AAAI Spring Symposium on Planning with
Incomplete Information.

[6] Erann Gat. "The ESL User's Guide", unpublished.
http://www-aig.jpl.nasa.gov/home/gat/esl.html

[7] Damian Lyons. "Representing and Analyzing action
plans as networks of concurrent processes, " IEEE
Transactions on Robotics and Automation, 9(3), June
1993.

[8] Drew McDermott. "A Reactive Plan Language,"
Technical Report 864, Yale University Department of
Computer Science.

[9] Barney Pell, et al. "An Autonomous Spacecraft Agent
Prototype." Autonomous Robots, to appear.

[10] M. J. Schoppers. "Universal Plans for Reactive Robots
in Unpredictable Domains," Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 1987.

[11] Brian Williams and Pandurang Nayak. "A Model-
Based Approach to Reactive Self-Configuring
Systems." Proceedings of AAAI96.

Dr. Erann Gat is a senior member
of the technical staff at the Jet
Propulsion Laboratory, California
Institute of Technology, where he has
been working on autonomous control
architectures since 1988. In 1991 Dr.
Gat developed the ATLANTIS
control architecture, one of the first
integrations of deliberative and
reactive components to be

demonstrated on a real robot. ATLANTIS was used as the
basis for a robot called Alfred which won the 1993 AAAI
mobile robot contest. Dr. Gat was also the principal
architect of the control software for Rocky III and Rocky IV,
the direct predecessors of the Pathfinder Sojourner rover.
Dr. Gat escapes the dangers of everyday life in Los Angeles
by pursuing safe hobbies like skiing, scuba diving, and
flying small single-engine airplanes.

Dr. Barney Pell is a Senior
Computer Scientist in the
Computational Sciences Division at
NASA Ames Research Center. He is
one of the architects of the Remote
Agent for New Millennium's Deep
Space One (DS-1) mission, and leads
a team developing the Smart
Executive component of the DS-1
Remote Agent. Dr. Pell received a

B.S. degree with distinction in Symbolic Systems at
Stanford University. He received a Ph.D. in computer
science at Cambridge University, England, where he studied
as a Marshall Scholar. His current research interests include
spacecraft autonomy, integrated agent architecture, reactive
execution systems, collaborative software development, and
strategic reasoning. Pell was guest editor for
Computational Intelligence Journal in 1996 and has given
tutorials on autonomous agents, space robotics, and game-
playing.

AcknowledgementsÑ Ron Keesing and Chris Plaunt
contributed to the design and implementation of the resource
management routines described in this paper. This work was
performed at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

